This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Towards a digital twin for underwater systems

A Meta-Learning-based Approach

Marina Rantanen Modéer Båstad 2023-10-12, NATO STO AVT-369

COMPANY UNCLASSIFIED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Marina Rantanen Modéer| 301722431| Issue 1

Challenge at hand

- In late 2022: Saab Light Weight Torpedo (SLWT) delivered to the Swedish Defence Materiel Administration (FMV)
- Modular design and optimal operation for the Baltic sea, maximizing availability through electric propulsion
- BUT: batteries degrade over time
- THEREFORE: desired high-fidelity models of physical assets to monitor condition
- SO THAT: the battery usage and future design may be optimized

Optimal operation, predictive maintenance & effective designsupport

Battery degradation prediction

Saab Dynamics

- Underwater, Missiles and Ground Combat
- Linköping and Karlskoga (+ new office in Karlstad)
- Focus on Swedish market, but also three international strategic markets: Australia, the UK and the U.S.
- Wide range of novel and legacy systems

Saab Light Weight Torpedo

Brackish

459m GOTLANDIA

GLEBIA LANDSORT

GŁĘBIA GOTLANDZKA 220m

Ø54m

KLAJPEDA

KALININGRAD

GDYNIA

Atlantic

SLWT models to support operation

Large range of design and ILS models on multiple levels of abstraction, scope and detail:

- Hydrodynamic Model: Water flow, currents, and pressure dynamics.
- Sensor and Detection Model: sonar and other sensor data, target detection and tracking.
- Communication Model: protocols, reliable data transmission in challenging conditions.
- Target Behavior Model: adaptive defense strategies.
- Control and Actuation Model: control algorithms (autonomous systems)
- Missing: digital counterpart to physical assets

End goal

Battery modelling

Data-scarce Digital Twins?

The Challenge: Low Data Access

- Limited Training Data: Insufficient data for accurate model creation
- **Reduced Effectiveness:** Hinders the capabilities of digital twins
- **Consequences:** Impacts decision-making, testing, and analysis

Root Causes:

- **Classified Environments:** Security concerns restrict data usage.
- **Cost and Resources:** Expensive and resource-intensive data collection.
- Rapid Technology Evolution: Obsolescence of existing data.

Meta Learning

- Focuses on "learning how to learn"
- Enables models to acquire new knowledge and adapt quickly to different tasks
- Key components: tasks, models, and meta-learners.
- Learns from multiple tasks to improve generalization abilities
- Few-shot learning is a common application of metalearning, where models excel with minimal examples.
- Meta-learning algorithms include Reptile and Model-Agnostic Meta-Learning (MAML)
- Plays a pivotal role in enabling AI systems to continuously improve and adapt in dynamic environments
- Research is ongoing
- Here:
 - Outer learner: Model Agnostic Meta Learning, MAML
 - Inner learner: Recurrent Neural Network

Experimental setup

- Open dataset: Oxford Battery Degradation, 8 Li-ion cells
- Voltage to temperature
- Data split: 80% training, 10% validation and 10% test
- MATLAB Deep Learning Toolbox

Training loop

Algorithm 1: Model-agnostic meta-learning

Require: p(T): distribution over tasks Require: α , β : step size hyper parameters 1: randomly initialize θ 2: while not done do 3: Sample batch of tasks Ti $_{\sim} p(T)$ 4: for all Ti do 5: Evaluate $\nabla \theta \downarrow$ Ti ($f\theta$) with respect to K examples 6: Compute adapted parameters with gradient descent : $\theta'_{1} = \theta - \alpha \nabla \theta \downarrow$ Ti ($f\theta$) 7: End for 8: Update $\theta \leftarrow \theta \neg \beta \nabla \theta \Sigma$ Ti $_{\sim} p(T) \downarrow$ Ti ($f\theta'$) 9: end while

Algorithm 2: Adaptation MAML 1: function ADAPT ($f, \Theta, Da; \phi$)

1: function ADAPT ($f, \Theta, Da; \phi$) 2: $\Theta 0 \leftarrow \Theta$ 3: for j ε { 1 ... adaptation steps } do 4: Lj \leftarrow L (Ya, f (Xa; Θ j-1)) 5: $\Theta j \leftarrow \Theta$ j-1 - $\phi \nabla \Theta$ j-1 L j 6: return Θ adaptation steps

Intermediate results

Prediction errors

A	— meta-learning learning/adaptation
	$ end \mathcal{L}_3$
$ abla \mathcal{L}_1$	$\nabla \mathcal{L}_2 = \theta_3^*$
6	$\theta_1^* \bullet \theta_2^*$

Conclusions & future work

Promising Outcomes:

- Enhanced Adaptation: MAML demonstrates remarkable adaptability to new tasks with minimal data.
- Generalization: Improved generalization abilities in a wide range of applications.

Future Research Directions:

- Fine-tuning Strategies: Investigate more efficient fine-tuning to boost model performance further
- Meta-Learner Architectures: Explore novel meta-learner architectures to enhance the learning process
- Robustness and Stability: Address issues related to robustness and stability when adapting to highly dynamic environments

Thank you!

COMPANY UNCLASSIFIED | NOT EXPORT CONTROLLED | NOT CLASSIFIED Marina Rantanen Modéer| 301722431| Issue 1